Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 10: 975012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923955

RESUMEN

In this study, we addressed the functional significance of co-operative DNA binding of the cytokine-driven transcription factor STAT1 (signal transducer and activator of transcription 1) in an experimental murine model of acute myocardial infarction (MI). STAT1 knock-in mice expressing a phenylalanine-to-alanine substitution at position 77 in the STAT1 amino-terminal domain were examined for the early clinical effects produced by ligation of the left anterior descending coronary artery (LAD), an established model for MI. The F77A mutation has been previously reported to disrupt amino-terminal interactions between adjacent STAT1 dimers resulting in impaired tetramerization and defective co-operative binding on DNA, while leaving other protein functions unaffected. Our results demonstrate that a loss of STAT1 tetramer stabilization improves survival of adult male mice and ameliorates left ventricular dysfunction in female mice, as determined echocardiographically by an increased ejection fraction and a reduced left intra-ventricular diameter. We found that the ratio of STAT3 to STAT1 protein level was higher in the infarcted tissue in knock-in mice as compared to wild-type (WT) mice, which was accompanied by an enhanced infiltration of immune cells in the infarcted area, as determined by histology. Additionally, RNA sequencing of the infarcted tissue 24 h after LAD ligation revealed an upregulation of inflammatory genes in the knock-in mice, as compared to their WT littermates. Concomitantly, genes involved in oxidative phosphorylation and other metabolic pathways showed a significantly more pronounced downregulation in the infarcted tissue from STAT1F77A/F77A mice than in WT animals. Based on these results, we propose that dysfunctional STAT1 signalling owing to a lack of oligomerisation results in a compensatory increase in STAT3 expression and promotes early infiltration of immune cells in the infarcted area, which has beneficial effects on left ventricular remodelling in early MI following LAD ligation.

2.
JID Innov ; 3(1): 100154, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36561914

RESUMEN

Inflammatory edema formation and polymorphonuclear leukocyte (neutrophil) accumulation are common components of cutaneous vascular inflammation, and their assessment is a powerful investigative and drug development tool but typically requires independent cohorts of animals to assess each. We have established the use of a mathematical formula to estimate the ellipsoidal-shaped volume of the edematous wheal or bleb after intradermal injections of substances in mice pretreated intravenously with Evans blue dye (which binds to plasma albumin) to act as an edema marker. Whereas previous extraction of Evans blue dye with formamide is suitable for all strains of mice, we report this quicker and more reliable assessment of edema volume in situ. This therefore allows neutrophil accumulation to be assessed from the same mouse using the myeloperoxidase assay. Importantly, we examined the influence of Evans blue dye on the spectrometry readout at the wavelength at which myeloperoxidase activity is measured. The results indicate that it is feasible to quantify edema formation and neutrophil accumulation in the same mouse skin site. Thus, we show techniques that can assess edema formation and neutrophil accumulation at the same site in the same mouse, allowing paired measurements and reducing the total use of mice by 50%.

4.
Biochem Biophys Res Commun ; 606: 10-16, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35338853

RESUMEN

BACKGROUND: There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES: We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS: We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS: FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS: Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.


Asunto(s)
Infarto del Miocardio , Factor 2 Relacionado con NF-E2/metabolismo , Remodelación Ventricular , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/genética , Remodelación Ventricular/fisiología
5.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34375309

RESUMEN

Nox2 is a ROS-generating enzyme, deficiency of which increases suppression by Tregs in vitro and in an in vivo model of cardiac remodeling. As Tregs have emerged as a candidate therapy in autoimmunity and transplantation, we hypothesized that Nox2 deficiency in Tregs in recipient mice may improve outcomes in a heart transplant model. We generated a potentially novel B6129 mouse model with Treg-targeted Nox2 deletion (Nox2fl/flFoxP3Cre+ mice) and transplanted with hearts from CB6F1 donors. As compared with those of littermate controls, Nox2fl/flFoxP3Cre+ mice had lower plasma levels of alloantibodies and troponin-I, reduced levels of IFN-γ in heart allograft homogenates, and diminished cardiomyocyte necrosis and allograft fibrosis. Single-cell analyses of allografts revealed higher absolute numbers of Tregs and lower CD8+ T cell infiltration in Nox2-deficient recipients compared with Nox2-replete mice. Mechanistically, in addition to a greater suppression of CD8+CD25- T effector cell proliferation and IFN-γ production, Nox2-deficient Tregs expressed higher levels of CCR4 and CCR8, driving cell migration to allografts; this was associated with increased expression of miR-214-3p. These data indicate that Nox2 deletion in Tregs enhances their suppressive ability and migration to heart allografts. Therefore, Nox2 inhibition in Tregs may be a useful approach to improve their therapeutic efficacy.


Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/inmunología , Trasplante de Corazón , NADPH Oxidasa 2/genética , Linfocitos T Reguladores/inmunología , Aloinjertos/metabolismo , Aloinjertos/patología , Animales , Linfocitos T CD8-positivos/fisiología , Movimiento Celular , Proliferación Celular , Femenino , Fibrosis , Rechazo de Injerto/sangre , Interferón gamma/metabolismo , Isoanticuerpos/sangre , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Necrosis , Receptores CCR4/metabolismo , Receptores CCR8/metabolismo , Linfocitos T Reguladores/metabolismo , Trasplante Homólogo , Troponina I/sangre
6.
Shock ; 56(2): 268-277, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34276040

RESUMEN

ABSTRACT: Leukocyte Nox2 is recognized to have a fundamental microbicidal function in sepsis but the specific role of Nox2 in endothelial cells (EC) remains poorly elucidated. Here, we tested the hypothesis that endothelial Nox2 participates in the pathogenesis of systemic inflammation and hypotension induced by LPS. LPS was injected intravenously in mice with Tie2-targeted deficiency or transgenic overexpression of Nox2. Mice with Tie2-targeted Nox2 deficiency had increased circulating levels of TNF-α, enhanced numbers of neutrophils trapped in lungs, and aggravated hypotension after LPS injection, as compared to control LPS-injected animals. In contrast, Tie2-driven Nox2 overexpression attenuated inflammation and prevented the hypotension induced by LPS. Because Tie2-Cre targets both EC and myeloid cells we generated bone marrow chimeric mice with Nox2 deletion restricted to leukocytes or ECs. Mice deficient in Nox2 either in leukocytes or ECs had reduced LPS-induced neutrophil trapping in the lungs and lower plasma TNF-α levels as compared to control LPS-injected mice. However, the pronounced hypotensive response to LPS was present only in mice with EC-specific Nox2 deletion. Experiments in vitro with human vein or aortic endothelial cells (HUVEC and HAEC, respectively) treated with LPS revealed that EC Nox2 controls NF-κB activation and the transcription of toll-like receptor 4 (TLR4), which is the recognition receptor for LPS. In conclusion, these results suggest that endothelial Nox2 limits NF-κB activation and TLR4 expression, which in turn attenuates the severity of hypotension and systemic inflammation induced by LPS.


Asunto(s)
Células Endoteliales/fisiología , Endotoxemia/etiología , Hipotensión/etiología , Inflamación/etiología , NADPH Oxidasa 2/fisiología , Receptor Toll-Like 4/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
8.
ESC Heart Fail ; 8(2): 1427-1437, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33511759

RESUMEN

AIMS: Endothelial activation and inflammatory cell infiltration have important roles in the development of cardiac fibrosis induced by renin-angiotensin system activation. NADPH oxidases (Nox proteins) are expressed in endothelial cells (ECs) and alter their function. Previous studies indicated that Nox2 in ECs contributes to angiotensin II (AngII)-induced cardiac fibrosis. However, the effects of EC Nox4 on cardiac fibrosis are unknown. METHODS AND RESULTS: Transgenic (TG) mice overexpressing endothelial-restricted Nox4 were studied alongside wild-type (WT) littermates as controls. At baseline, Nox4 TG mice had significantly enlarged hearts compared with WT, with elongated cardiomyocytes (increased by 18.5%, P < 0.01) and eccentric hypertrophy but well-preserved cardiac function by echocardiography and in vivo pressure-volume analysis. Animals were subjected to a chronic AngII infusion (AngII, 1.1 mg/kg/day) for 14 days. Whereas WT/AngII developed a 2.1-fold increase in interstitial cardiac fibrosis as compared with WT/saline controls (P < 0.01), TG/AngII mice developed significant less fibrosis (1.4-fold increase, P > 0.05), but there were no differences in cardiac hypertrophy or contractile function between the two groups. TG hearts displayed significantly decreased inflammatory cell infiltration with reduced levels of vascular cell adhesion molecule 1 in both the vasculature and myocardium compared with WT after AngII treatment. TG microvascular ECs stimulated with AngII in vitro supported significantly less leukocyte adhesion than WT ECs. CONCLUSIONS: A chronic increase in endothelial Nox4 stimulates physiological cardiac hypertrophy and protects against AngII-induced cardiac fibrosis by inhibiting EC activation and the recruitment of inflammatory cells.


Asunto(s)
Células Endoteliales , Miocardio/patología , NADPH Oxidasa 4 , Angiotensina II/efectos adversos , Animales , Fibrosis , Inflamación , Ratones , Ratones Transgénicos
9.
J Cell Sci ; 134(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33408247

RESUMEN

The migration of circulating neutrophils towards damaged or infected tissue is absolutely critical to the inflammatory response. L-selectin is a cell adhesion molecule abundantly expressed on circulating neutrophils. For over two decades, neutrophil L-selectin has been assigned the exclusive role of supporting tethering and rolling - the initial stages of the multi-step adhesion cascade. Here, we provide direct evidence for L-selectin contributing to neutrophil transendothelial migration (TEM). We show that L-selectin co-clusters with PECAM-1 - a well-characterised cell adhesion molecule involved in regulating neutrophil TEM. This co-clustering behaviour occurs specifically during TEM, which serves to augment ectodomain shedding of L-selectin and expedite the time taken for TEM (TTT) to complete. Blocking PECAM-1 signalling (through mutation of its cytoplasmic tail), PECAM-1-dependent adhesion or L-selectin shedding, leads to a significant delay in the TTT. Finally, we show that co-clustering of L-selectin with PECAM-1 occurs specifically across TNF- but not IL-1ß-activated endothelial monolayers - implying unique adhesion interactomes forming in a cytokine-specific manner. To our knowledge, this is the first report to implicate a non-canonical role for L-selectin in regulating neutrophil TEM.


Asunto(s)
Movimiento Celular , Selectina L , Neutrófilos , Migración Transendotelial y Transepitelial , Adhesión Celular , Endotelio Vascular , Humanos , Selectina L/genética
11.
Nat Commun ; 11(1): 3812, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732889

RESUMEN

Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications.


Asunto(s)
Diabetes Mellitus Experimental/patología , Células Endoteliales/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Enfermedades Vasculares/patología , Animales , Antígenos CD/genética , Aterosclerosis/patología , Cadherinas/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Regulación de la Expresión Génica/genética , Humanos , Hiperglucemia/patología , Isquemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética
12.
Cardiovasc Res ; 116(6): 1101-1112, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841135

RESUMEN

Improvements in early interventions after acute myocardial infarction (AMI), notably, the increased use of timely reperfusion therapy, have increased survival dramatically in recent decades. Despite this, maladaptive ventricular remodelling and subsequent heart failure (HF) following AMI remain a significant clinical challenge, particularly because several pre-clinical strategies to attenuate remodelling have failed to translate into clinical practice. Monocytes and macrophages, pleiotropic cells of the innate immune system, are integral in both the initial inflammatory response to injury and subsequent wound healing in many tissues, including the heart. However, maladaptive immune cell behaviour contributes to ventricular remodelling in mouse models, prompting experimental efforts to modulate the immune response to prevent the development of HF. Seminal work in macrophage biology defined macrophages as monocyte-derived cells that are comprised of two populations, pro-inflammatory M1 macrophages and reparative M2 macrophages, and initial investigations into cardiac macrophage populations following AMI suggested they aligned well to this model. However, more recent data, in the heart and other tissues, demonstrate remarkable heterogeneity and plasticity in macrophage development, phenotype, and function. These recent insights into macrophage biology may explain the failure of non-specific immunosuppressive strategies and offer novel opportunities for therapeutic targeting to prevent HF following AMI. Here, we summarize the traditional monocyte-macrophage paradigm, experimental evidence for the significance of these cells in HF after AMI, and the potential relevance of emerging evidence that refutes canonical models of monocyte and macrophage biology.


Asunto(s)
Macrófagos/patología , Monocitos/patología , Infarto del Miocardio/patología , Miocardio/patología , Remodelación Ventricular , Animales , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Fenotipo
13.
Front Immunol ; 10: 2227, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608057

RESUMEN

The migration of circulating leukocytes toward damaged tissue is absolutely fundamental to the inflammatory response, and transendothelial migration (TEM) describes the first cellular barrier that is breached in this process. Human CD14+ inflammatory monocytes express L-selectin, bestowing a non-canonical role in invasion during TEM. In vivo evidence supports a role for L-selectin in regulating TEM and chemotaxis, but the intracellular mechanism is poorly understood. The ezrin-radixin-moesin (ERM) proteins anchor transmembrane proteins to the cortical actin-based cytoskeleton and additionally act as signaling adaptors. During TEM, the L-selectin tail within transmigrating pseudopods interacts first with ezrin to transduce signals for protrusion, followed by moesin to drive ectodomain shedding of L-selectin to limit protrusion. Collectively, interaction of L-selectin with ezrin and moesin fine-tunes monocyte protrusive behavior in TEM. Using FLIM/FRET approaches, we show that ERM binding is absolutely required for outside-in L-selectin clustering. The cytoplasmic tail of human L-selectin contains two serine (S) residues at positions 364 and 367, and here we show that they play divergent roles in regulating ERM binding. Phospho-S364 blocks direct interaction with ERM, whereas molecular modeling suggests phospho-S367 likely drives desorption of the L-selectin tail from the inner leaflet of the plasma membrane to potentiate ERM binding. Serine-to-alanine mutagenesis of S367, but not S364, significantly reduced monocyte protrusive behavior in TEM under flow conditions. Our data propose a model whereby L-selectin tail desorption from the inner leaflet of the plasma membrane and ERM binding are two separable steps that collectively regulate protrusive behavior in TEM.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Selectina L/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosforilación/fisiología , Serina/metabolismo , Migración Transendotelial y Transepitelial/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Análisis por Conglomerados , Citoplasma/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos/metabolismo , Monocitos/metabolismo , Transducción de Señal/fisiología , Células THP-1
14.
Mol Immunol ; 114: 30-40, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31336247

RESUMEN

Heterozygous gain-of-function (GOF) mutations in the cytokine-regulated transcription factor STAT1 (signal transducer and activator of transcription 1) lead to chronic mucocutaneous candidiasis (CMC). However, the molecular basis of these pathogenic missense mutations is largely unknown. In this study, we characterized in more detail the CMC-associated GOF substitution mutation of arginine-to-tryptophan at position 274 (R274W) and, in addition, the adjacent glutamine-to-alanine mutation at position 275 (Q275A). Both mutants displayed elevated tyrosine phosphorylation levels, prolonged nuclear accumulation, and increased transcriptional responses to interferon-γ (IFNγ) stimulation. No difference was observed between wild-type (WT) and mutant STAT1 in DNA sequence-specificity or dissociation kinetics from high-affinity DNA-binding elements known as gamma-activated sites (GAS). Furthermore, all variants exhibited similar cooperative DNA binding. Unexpectedly, in vitro dephosphorylation rates using the recombinant STAT1-inactivating Tc45 phosphatase in both the absence and presence of double-stranded GAS elements were similar in all STAT1 variants. Likewise, the rate of tyrosine phosphorylation by Janus kinase 2 (JAK2) was unaltered as compared to the WT molecule, excluding that the phenotype of these mutants is caused by either defective Tc45-catalyzed dephosphorylation or JAK2-induced hyper-activation. Interestingly, within 10 min of IFNγ exposure, the majority of R274W and Q275A molecules had entered the nucleus, whereas the wild-type protein remained predominantly cytosolic. Thus, the exchange of critical residues located at the binding interface in the antiparallel dimer conformer led to a premature accumulation of phospho-STAT1 in the nuclear compartment. In summary, our data show that the hyper-activity of the GOF mutations results, at least in part, from the premature nuclear import of the tyrosine-phosphorylated molecules and not from alterations in their phosphorylation or dephosphorylation rates.


Asunto(s)
Mutación con Ganancia de Función/genética , Mutación Missense/genética , Dominios Proteicos/genética , Factor de Transcripción STAT1/genética , Candidiasis Mucocutánea Crónica/genética , Línea Celular Tumoral , Núcleo Celular/genética , Células Cultivadas , Citocinas/genética , Células HeLa , Heterocigoto , Humanos , Interferón gamma/genética , Fosforilación/genética , Unión Proteica/genética , Transducción de Señal/genética , Transcripción Genética/genética
15.
Front Immunol ; 10: 1068, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139190

RESUMEN

L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.


Asunto(s)
Selectina L/fisiología , Leucocitos/fisiología , Animales , Adhesión Celular , Movimiento Celular , Humanos , Selectina L/química , Selectina L/genética , Ligandos , Dominios Proteicos , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Migración Transendotelial y Transepitelial/fisiología
16.
J Cell Sci ; 131(13)2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29777033

RESUMEN

Leukocyte transendothelial migration (TEM) is absolutely fundamental to the inflammatory response, and involves initial pseudopod protrusion and subsequent polarised migration across inflamed endothelium. Ezrin/radixin/moesin (ERM) proteins are expressed in leukocytes and mediate cell shape changes and polarity. The spatio-temporal organisation of ERM proteins with their targets, and their individual contribution to protrusion during TEM, has never been explored. Here, we show that blocking binding of moesin to phosphatidylinositol 4,5-bisphosphate (PIP2) reduces its C-terminal phosphorylation during monocyte TEM, and that on-off cycling of ERM activity is essential for pseudopod protrusion into the subendothelial space. Reactivation of ERM proteins within transmigrated pseudopods re-establishes their binding to targets, such as L-selectin. Knockdown of ezrin, but not moesin, severely impaired the recruitment of monocytes to activated endothelial monolayers under flow, suggesting that this protein plays a unique role in the early recruitment process. Ezrin binds preferentially to L-selectin in resting cells and during early TEM. The moesin-L-selectin interaction increases within transmigrated pseudopods as TEM proceeds, facilitating localised L-selectin ectodomain shedding. In contrast, a non-cleavable L-selectin mutant binds selectively to ezrin, driving multi-pseudopodial extensions. Taken together, these results show that ezrin and moesin play mutually exclusive roles in modulating L-selectin signalling and shedding to control protrusion dynamics and polarity during monocyte TEM.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Endotelio/citología , Selectina L/metabolismo , Proteínas de Microfilamentos/metabolismo , Monocitos/citología , Monocitos/metabolismo , Línea Celular , Movimiento Celular , Proteínas del Citoesqueleto/genética , Endotelio/metabolismo , Humanos , Selectina L/genética , Proteínas de Microfilamentos/genética , Unión Proteica
17.
J Clin Invest ; 128(7): 3088-3101, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29688896

RESUMEN

The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II-induced (Ang II-induced) pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline, whereas Ang II-induced effector T cell (Teff) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of Ang II-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 antibody depletion of Tregs. Mechanistically, Nox2-/y Tregs showed higher in vitro suppression of Teff proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on Ang II-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.


Asunto(s)
Angiotensina II/metabolismo , NADPH Oxidasa 2/metabolismo , Linfocitos T Reguladores/metabolismo , Remodelación Vascular/fisiología , Traslado Adoptivo , Angiotensina II/administración & dosificación , Angiotensina II/toxicidad , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Femenino , Factores de Transcripción Forkhead/metabolismo , Hipertensión/inmunología , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Cardiovasculares , Miocardio/inmunología , Miocardio/metabolismo , Miocardio/patología , NADPH Oxidasa 2/deficiencia , NADPH Oxidasa 2/genética , FN-kappa B/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/inmunología
18.
Cell Tissue Res ; 371(3): 437-453, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29353325

RESUMEN

L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the "triad of L-selectin regulation", highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.


Asunto(s)
Selectina L/metabolismo , Neutrófilos/citología , Secuencia de Aminoácidos , Animales , Polaridad Celular , Humanos , Selectina L/química , Neutrófilos/metabolismo , Dominios Proteicos , Transducción de Señal
19.
Methods Mol Biol ; 1591: 143-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28349480

RESUMEN

Inflammation is a complex process involving the contribution of leukocytes and blood vessels, which collectively aim to restore homeostasis following injury to the body. Leukocytes are essential front-line responders to infectious or noninfectious injury and can be deployed within minutes of sensing damage. A typical inflammatory response leads to the exit of circulating leukocytes into the surrounding extravascular space, which follows a series of increasingly adhesive events - collectively termed the "multistep adhesion cascade." The Ras homology (Rho) family of small GTPases (RhoGTPases) are intracellular proteins involved in translating extracellular signals into cellular behavior, such as adhesion and migration. This chapter focuses on how to prepare, perform, and monitor RhoGTPase activation assays using classic pull-down assays. Although this chapter focuses on RhoGTPase signaling downstream of L-selectin clustering, the methods outlined here can be applied to analyzing RhoGTPase activity in response to stimulating other surface receptors.


Asunto(s)
Leucocitos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Bioensayo/métodos , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Inflamación/metabolismo , Selectina L/metabolismo , Ratones , Transducción de Señal/fisiología
20.
J Biol Chem ; 292(16): 6703-6714, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28235798

RESUMEN

L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of µ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-µ1A and the GST-µ1A C-terminal domain, but not the GST-µ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in µ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of µ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-µ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of µ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to µ1A was used to identify the µ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates µ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin.


Asunto(s)
Complejo 1 de Proteína Adaptadora/química , Subunidades mu de Complejo de Proteína Adaptadora/química , Selectina L/química , Secuencias de Aminoácidos , Animales , Ácido Aspártico/química , Cristalografía por Rayos X , Citoplasma/metabolismo , Endotelio Vascular/metabolismo , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Monocitos/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Proteómica , Células RAW 264.7 , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Serina/química , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...